EVALUASI KINERJA PLATE HEAT EXCHANGER DI REFINERY PLANT INDUSTRI MINYAK GORENG
Abstract
Plate Heat Exchanger (PHE) is an element that has an important role in energy efficiency in PT. XYZ. At PT. XYZ there is a problem with the PHE device, where the flow rate of the hot fluid in the device tends to decrease over time, this can cause the heat transfer between the hot fluid and the cold fluid to be sub-optimal resulting in a decrease in the performance of the device. The performance of PHE equipment can be seen from its effectiveness, if PHE performance decreases it can cause an increase in energy consumption so that the cost incurred also increases. This study aims to calculate the effectiveness of PHE type 605A used as a heat exchanger between crude palm oil and bleached palm oil refined at PT. XYZ and current effectiveness is around 81.77% - 86.13%. However, the efficacy of PHE decreases over time and is expected to decrease to 75% on day 11. Recommendations that can be given in this study are routine maintenance and cleaning, real-time monitoring of the performance of the plate heat exchanger, and a review of the workload of the plate heat exchanger system.
Keywords
Full Text:
PDFReferences
Christian, G. K. (2003). Heat Exchanger Fouling and Cleaning : Fundamentals and Applications The Balance Between in the Cleaning of Milk Fouling Deposits. Engineering.
Coniwanti, P., Zamali, F., & Rance, V. L. (2019). Evaluasi efisiensi heat exchanger di refinery plant industri minyak goreng. Jurnal Teknik Kimia, 25(1), 18–20. https://doi.org/10.36706/jtk.v25i1.16
D Q Kern. (1983). Process Heat Transfer.
Ekadewi Anggraini Handoyo. (2000). Pengaruh Kecepatan Aliran Terhadap Efektivitas Shell-and-Tube Heat Exchanger. Jurnal Teknik Mesin, 2(2), 86–90.
Hou, T. K., Kazi, S. N., Mahat, A. B., Teng, C. B., Al-Shamma’a, A., & Shaw, A. (2017). Industrial Heat Exchanger: Operation and Maintenance to Minimize Fouling and Corrosion. Heat Exchangers - Advanced Features and Applications, April. https://doi.org/10.5772/66274
Kieser, B., Phillion, R., Smith, S., & Mccartney, T. (2011). The Application of Industrial Scale Ultrasonic Cleaning To Heat exchangers. Heat Exchanger Fouling and Cleaning - 2011, 2011(1961), 336–338.
Kishore, P. S., Kumar, R., & Vamsi Venkata, N. (2018). Comparative study of mechanical and chemical methods for surface cleaning of a marine shell-and-tube heat exchanger. Heat Transfer - Asian Research, 47(3), 520–530. https://doi.org/10.1002/htj.21316
Mahmud, S. F. (2019). Proses Pengolahan CPO ( Crude Palm Oil ) menjadi RBDPO ( Refined Bleached and Deodorized Palm Oil ) di PT XYZ Dumai. UNITEK, 12(1), 55–64.
Müller-Steinhagen, H., Malayeri, M. R., & Watkinson, A. P. (2011). Heat exchanger fouling: Mitigation and cleaning strategies. Heat Transfer Engineering, 32(3–4), 189–196. https://doi.org/10.1080/01457632.2010.503108
N.S. Kazi. (2012). Fouling and Fouling Mitigation on Heat Exchanger Surfaces. Heat Exchangers - Basics Design Applications. https://doi.org/10.5772/32990
Nandiati, S., Kirom, M. R., & Ajiwiguna, T. A. (2019). Evaluasi Kinerja Pada Berbagai Variasi Susunan Heat Exchanger Menggunakan Metode Lmtd Dan Ntu Evaluation of Heat Exchanger Configuration Variate Performance Using Lmtd and Ntu Methods. E-Proceeding of Engineering, 6(2), 5058–5065.
Rahmadi, J., & Putra, M. J. S. (2023). Studi Komparatif Efektivitas Perpindahan Kalor dengan Pengaturan Laju Aliran Fluida Pendingin Heat Exchanger Jenis Plate Aliran Searah. 7, 3500–3506.
Robiyanyusra, Gani, U. A., & Taufiqurrahman, M. (2021). Analisis Efektivitas Laju Perpindahan Panas Alat Penukar Kalor Tipe Double Pipe. Jurnal Teknologi Rekayasa Teknik Mesin (JTRAIN), 2(2), 97–104.
Shokouhmand, H., & Hasanpour, M. (2020). Effect of number of plates on the thermal performance of a plate heat exchanger with considering flow maldistribution. Journal of Energy Storage, 32(June), 101907. https://doi.org/10.1016/j.est.2020.101907
Soegijarto, R. A., & Arsana, M. (2021). Pengaruh Variasi Temperatur Fluida Masuk Terhadap Efektivitas Heat Exchanger Shell And Tube Dengan Menggunakan Nanofluida TiO2. Jurnal Teknik Mesin, 9(02), 131–136.
Sridharan, M., Devi, R., Dharshini, C. S., & Bhavadarani, M. (2019). IoT based performance monitoring and control in counter flow double pipe heat exchanger. Internet of Things (Netherlands), 5, 34–40. https://doi.org/10.1016/j.iot.2018.11.002
Sudarni, D. H. A. (2019). Cleaning schedule for increased energy efficiency on heat exchanger process: Sugar plant case study. Journal of Physics: Conference Series, 1375(1). https://doi.org/10.1088/1742-6596/1375/1/012007
Syaichurrozi, I., Metta Karina, A., & Imanuddin, A. (2014). Study of Plate and Frame Heat Exchanger Performance : The Effects of Mass Flow Rate, Inlet Temperature and Type of Flow Againts The Overall Heat Transfer Coefficient. Eksergi, 11(2), 11. https://doi.org/10.31315/e.v11i2.361
Walikrom, R., Muin, A., & Hermanto. (2018). Studi Kinerja Plate Heat Exchanger Pada Sistem Pendingin PLTGU. Turbulen: Jurnal Teknik Mesin, 1(1), 40–47. www.univ-tridinanti.ac.id/ejournal/
Yahya, A. K., Rahayu, P., Ulia, H., Maulana, A. Y., Loss, H., & Pompa, K. (2022). ANALISA HEAD LOSS DAN KERJA POMPA DENGAN VARIASI PERUBAHAN DIAMETER PADA SISTEM PEMIPAAN. SAINTI: Majalah Ilmiah Teknologi Industri, 19(2), 51–57.
Refbacks
- There are currently no refbacks.