REVIEW: TEKNOLOGI PREPARASI PATI NANOPARTIKEL DAN APLIKASINYA DALAM PENGEMBANGAN KOMPOSIT BIOPLASTIK

Maryam Maryam, Anwar Kasim, Novelina Novelina, Emriadi Emriadi

Abstract

The use of starch in the industry is very wide, both in the field of food and non-food. Therefore, to expand its application, starch needs to be modified in the form of starch nanoparticles. Nanoparticle technology will improve starch characteristics as a result; it has low suspension viscosity at relatively high concentrations, and has high binding strength due to a large active surface area. In general, there are three ways of making nanoparticle starch, namely acid or enzymatic hydrolysis, regeneration (precipitation) and mechanical treatment. The purpose of this study was to conduct a journal review relating to the preparation method of starch nanoparticles and their application in the development of bioplastic composites. The development of bioplastics is currently constrained by the results of bioplastic characteristics; both the physical and mechanical properties produced are still low. Nanoparticle technology developed to improve the characteristics with the addition of nano-sized material (nanoparticles) into bioplastic formulas that produce nanocomposites. The problem faced in the development of nanoparticle starch is that the preparation method used is not ready for commercial production. The resulting yield is still low and the process steps are too long. One way to overcome this is to adapt the nanoparticle starch preparation method that is more efficient for the production scale.

Keywords

starch, nanoparticle, preparation, bioplastic

Full Text:

PDF

References

Alexandra, M.D.P. and Dubois. 2000. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Materials Sci. Engin. Rep. 28: 1−63.

Amini, A.M., Razavi, S.M.A., 2016. A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocolloids 57, 132-138.

Angellier H, J.-L. Putaux, S. MolinaBoisseau, D. Dupeyre, A. Dufresne. 2005. Starch Nanocrystal filler in an acrylic polymer matrix. Macromolecular Symposia, Vol 221 No. 1. 95-104.

Angellier, H., Choisnard, L., MolinaBoisseau, S., Ozil, P., Dufresne, A., 2004. Optimization of the preparation of aqueous suspensions of waxy corn starch nanocrystals using a response surface methodology. Biomacromolecules 5, 1545-1551.

Angellier, H., Molinaboisseau, S., Dole, P., Dufresne, A., 2006. Thermoplastic starch waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7 (2), 531-539.

Anggellier H, Molena-Boisseau S, Dufresne A. 2005. Mechanical Properties of Waxy Maize Starch Nanocrystal Reinforced Natural Rubber. Macromolecules; 38(22) : 9161-9170.

Asua J. M. 2002. Miniemulsion Polymerization. Progress in Polymer Science 27. 1283-1346

Bel Haaj, S., Magnin, A., Pe´trier, C., Boufi, S., 2013. Starch nanoparticles formation via high power ultrasonication . Carbohydrate Polymers 92, 16251632.

Biliaderis C.G, D.R. Grant, J.R. Vose. 1981. Structural Characterization of Legume Starches. I. Studies on Amylose, Amylopectin, and BetaLimit Dextrin. Cereal Chemistry. 58. 496-502.

Chang, P.R., Ai, F., Chen, Y., Dufresne, A., Huang, J., 2009. Effects of starch nanocrystalgraftpolycaprolactone on mechanical properties of waterborne polyurethane-based nanocomposites. Journal of Applied Polymer Science 111 (2), 619-627.

Chen G, Wei M, Chen J, Huang J, Dufresne A, Changg PR. 2008. Simultaneous Reinforcing and Toughening New Nanocomposites of Waterborne Polyurethane Ulledwith Low Loading Level of Starch Nanocrystals. Polymers; 49(7) :1860-1870.

Chevillard A, Angellier H, Cuq B, Guillard V, Cesar G, Gontard N, Gastaldi E. 2011. How The Biodegradability of Wheat Gluten-Based Agromaterial Can be Modulated by Adding Nanoclay. Polymer Degradation and Stability. 96(12), 2088-2097.

Chin SF, Pang SC, Tay SH. 2011. Size Controlled Synthesis of Starch Nanoparticles by a Simple Nanoprecipitation Method. Short communication. Carbohydrate Polymer; 86:1817-1819.

Cooke D, and Gidley M.J. 1992. Loss of Crystalline and molecular order during starch gelatinization : Origin of the enthalpic transition. Carbohydrate Research, 227, 103112.

Dai, L., Qiu, C., Xiong, L., Sun, Q., 2015. Characterisation of corn starch-based films reinforced with taro starch nanoparticles. Food Chemistry 174, 82-88.

Dufresne, A., Cavaille, J.Y., Helbert, W., 1996. New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29, 7624-7626.

Dufresne, A., Cavaille, J.Y., Helbert, W., 1996. New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29, 7624-7626.

Fan, H.R., Ji, N., Zhao, M., Xiong, L., Sun, Q.J., 2016. Characterization of starch films impregnated with starch nanoparticles prepared by 2,2,6,6-tetramethylpiperidine-1oxyl (TEMPO)-mediated oxidation. Food Chemistry 192, 865-872.

Fang Y.Y., L.J. Wang, D. Li, B.Z. Li, B. Bhandari, X.D. Chen, Z.H. Mao. 2008. Preparation of crosslinked starch microspheres and their drug loading and releasing properties. Carbohydrate Polymer 74. 379384.

Gallant D, Bouchet B, Baldwin P. 1997. Microscopy of Starch : evidence of a new level of granule organization. Carbohydrate Polymers. 32 : 177-191.

Garcia, N.L., Ribba, L., Dufresne, A., Aranguren, M., Goyanes, S., 2009. Physico-mechanical properties of biodegradable starch nanocomposites. Macromolecular Materials and Engineering 294, 169-177.

García N.L, L. Ribba, A. Dufresne, M.I. Aranguren, S. Goyanes. 2011. Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr.Polym. 84, 203-210.

Garcia N.L, M. Lamanna, N. D’Accorso, A. Dufresne, M. Aranguren, S. Goyanes. 2012. Biodegradable materials from grafting of modified PLA onto starch nanocrystals. Polymer Degradation and Stability. 97, 2021-2026.

Giezen, E., Jongboom, O., Feil, H., Gotlieb, F., Boersma, A., 2000. Nanoparticles on the basis of biopolymer (Nanopartikel auf der basis von biopolymer). DE.

Glashan, S.A. and P.J. Halley. 2003. Preparation and Characterisation of Bio-Degradable Starch Based Nanocomposite Materials. Polymer Intl. 52(11): 1767–1773.

Gong, M., Li, X.J., Xiong, L., Sun, Q.J., 2016. Retrogradation property of starch nanoparticles prepared by pullulanase and recrystallization. Sta¨rke (Starch) 68, 230-238.

Gonza´lez, K., Retegi, A., Gonza´lez, A., Eceiza, A., Gabilondo, N., 2015. Starch and cellulose nanocrystals together into thermoplastic starch bionanocomposites. Carbohydrate Polymers 117 , 83-90.

Jane J. 2006. Current Understanding on Starch Granule Structures. American Journal of Food Science and Human Nutrition. 54, 31-36

Jayakodi L, Hoover R. 2002. The effect of lintnerization on cereal starch granules. Food Res Int. 35:665-680

Jenkin PJ,Donald AM. 1997. The Effect of Acid Hydrolysis on Native Starch Granule Structure. Starch-stake;49(7-8):262-267.

Kim JY, Lim ST. 2009. Prepartation of Nano Sized Starch Particles by Complex Formation with nbutanol. Carbohydrate Polymers;76:110-116.

Kim JY, Lim ST. 2010. Complex Formation Between Amylomaize Dextrin and n-butanol by Phase Separation System. Carbohydrate Polymers;82:264-269.

Kim JY, Yoon JW, Lim ST. 2009. Formation and Isolation of Nanocrystal Complexed Between Dextrin and nbutanol. Carbohydrate Polymers;78:626632.

Kim, H.Y., Han, J.A., Kweon, D.K., Park, J.D., Lim, S.T., 2013. Effect of ultrasonic treatments on nanoparticle preparation of acidhydrolyzed waxy corn starch. Carbohydrate Polymers 93, 582588 Kim, H.Y., Lee, J.H.,

Kim, J.Y., Lim, W.J., Lim, S.T., 2012. Characterization of nanoparticles prepared by acid hydrolysis of various starches. Sta¨rke (Starch) 64, 367-373.

Kim, H.Y., Park, D.J., Kim, J.Y., Lim, S.T., 2013. Preparation of crystalline starch nanoparticles using cold acid hydrolysis and ultrasonication . Carbohydrate Polymers 98 (1), 295-301.

Kim, J.Y., Lim, S.T., 2009. Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydrate Polymers 76 (6), 110-116.

Kim, J.Y., Park, D.J., Lim, S.T., 2008. Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chemistry 85, 182-187

Kristo E, Biliaderis CG. 2007. Phisical Properties of Starch NanocrystalReinforced Pullulan Films. Carbohydrate Polymers. 68:146158.

Lamanna, M., Morales, N.J., Garcı´a, N.L., Goyanes, S., 2013. Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydrate Polymer 97, 90-97.

Le Corre D, Bras J, Dufresne A. 2010. Starch Nanoparticles : A Review. Biomacromolecules;11:1139-1153.

Le Corre D, Vahanian E, Dufresne A, Bras J. 2012. Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules, 13(1), 132-137.

Li, X.J., Qiu, C., Ji, N., Sun, C.X., Xiong, L., Sun, Q.J., 2015. Mechanical, barrier and morphological properties of starch nanocrystals-reinforced pea starch films. Carbohydrate Polymers 121, 155-162.

Lin N. Huang J, Chang PR, Anderson DP,Yu J. 2011. Preparation, Modivication, and Application of Starch Nanocrystals in Nanomaterial: A Review. Journal of nanomaterials, Article ID 573687. 13.

Liu D, Wu Q, Chen H, Chang PR. 2009. Transitional Properties of Starch Colloid with Particle Size Reduction from Micro to Nanometer. Journal of Colloid and Interface Science;339(1):117-124.

Liu, C.Z., Jiang, S.S., Zhang, S.L., Xi, T.T., Sun, Q.J., Xiong, L., 2016. Characterization of edible corn starch nanocomposite films: the effect of self-assembled starch nanoparticles. Sta¨rke (Starch) 67, 1-10.

Ma X, Jiar R, Chang PR, Yu J. 2008. Fabrication and Characterization of Citric Acid-Modified Starch Nanoparticles/ Plasticized-Starch Composites. Biomacromolecules;9(11):33, 1420.

Martinez, S., Rivon, C., Troncoso, O.P., Torres, F.G., 2016. Botanical origin as a determinant for the mechanical properties of starch films with nanoparticle reinforcements. Sta¨rke (Starch) 68, 935-942.

Martin-Banderas, M. Flores-Mosquera, P. Riesco-Chueca, A. RodriguezGil,A. Cebolla, S. Chavez, A.M. Ganan-Calvo. 2005. Towards High‐Throughput Production of Uniformly Encoded Microparticles. Advance Material. 688.

Muljana, H., Picchioni, F., Heeres, H. J., & Janssen, L. P. B. M. 2010. Starch Modification in Supercritical CO2. University of Groningen.

Namazi H, Fathi F, Dadkhah A,. 2011. Hidrofobically Modifid Starch Using Long-Chain Fatty Acids for Preparation of Nanosized Starch Particles. Scientical Iranica, Transaction : Chemistry and Chemical Enggineering.

Namazi, H., Dadkhah, A., 2010. Convenient method for preparation of hydrophobically modified starch nanocrystals with using fatty acids. Carbohydrate Polymers 79 (3), 731-737.

Parker R. 2003. Introduction to Food Science. United States of America : Delmar, Thomson Learning.

Putaux, J.L., Molina-Boisseau, S., Momaur, T., Dufresne, A., 2003. Platelet nanocrystals resulting from the disruption of waxy corn starch granules by acid hydrolysis. Biomacromolecules 4 (5), 11981202.

Qiu, C., Qin, Y., Zhang, S.L., Xiong, L., Sun, Q.J., 2016. A comparative study of size-controlled worm-like amylopectin nanoparticles and spherical amylose nanoparticles: their characteristics and the adsorption properties of polyphenols. Food Chemistry 213, 579-587.

S.B. Brown, C.M. Orlando, H.F. Mark, N.M. Bikales, C.G. Overberger, G. Menges,J.I. Kroschwitz. 1988. Encyclopedia of Polymer Science and Engineering, 14, Wiley,New York, pp. 169.

Schartel, B., P. Potschke, U. Noll, and M. Abdel-Goud. 2005. Fire Behaviour of Polyamide 6/Multiwall Carbon Monotube Nanocomposites. Eur. Polymer J. 415: 1061−1070.

Schrijver J, Homburg K. 2013. Starch Demand for The Paper and Board Industry and Implications on Global Supply Chains. Proceedings. 10th Starch & Derivates Conference. Genewa. Tate & Tyle.

Shi A, Li D,Wang L,Li B, Adhikari B. 2011. Preparation of Starch-Based Nanoparticles Through Highpressure Homogenization Adminiemulsion Crosslinking: Influence of Various Process Parameters on Particle Size and Stability. Carbohydrate Polymers;83:1604-1610.

Shi, A.M., Dong, L., Wang, L.J., Li, B.Z., Adhikari, B., 2011. Preparation of starch-based nanoparticles through highpressure homogenization and miniemulsion cross-linking: influence of various process parameters on particle size and stability. Carbohydrate Polymers 83 (4), 1604-1610.

Shi, A.M., Wang, L.J., Li, D., Adhikari, B., 2013. Characterization of starch films containing starch nanoparticles. Part 1: physical and mechanical properties. Carbohydrate Polymers 96, 593-601.

Singh, S., Singh, N., Ezekiel, R., Kaur, A., 2011. Effects of gammairradiation on the morphological, structural, thermal and rheological properties of potato starches. Carbohydrate Polymers 83, 15211528.

Song, D., Thio, Y.S., Deng, Y., 2011. Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydrate Polymers 85, 208-214.

Song, S., Wang, C., Pan, Z., Wang, X., 2008. Preparation and characterization of amphiphilic starch nanocrystals. Journal of Applied Polymer Science 107 (1), 418-422.

Sun Q., M. Gong, Y. Li, L. Xiong. 2014. Effect of retrogradation time on preparation and characterization of proso millet starch nanoparticles. Carbohydrate Polymer. 111. 133-138.

Sun, Q.J., Li, G.H., Dai, L., Ji, N., Xiong, L., 2014a. Green preparation and characterization of waxy corn starch nanoparticles through enzymolysis and recrystallization. Food Chemistry 162, 223-228.

Sun, Q.J., Fan, H.R., Xiong, L., 2014b. Preparation and characterization of starch nanoparticles through ultrasonic-assisted oxidation methods. Carbohydrate Polymers 106, 359-364.

Teodoro, A.P., Mali, S., Romero, N., de Carvalho, G.M., 2015. Cassava starch films containing acetylated starch nanoparticles as reinforcement: physical and mechanical characterization. Carbohydrate Polymers 126, 9-16.

Tian, H.F., Xu, G.Z., 2011. Processing and characterization of glycerolplasticized soy protein plastics reinforced with citric acid-modified starch nanoparticles. Journal of Polymers and the Environment 19 (3), 582-588.

Viguie´, J., Molinaboisseau, S., Dufresne, A., 2007. Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals. Macromolecular Bioscience 7 (11), 1206-1216.

Wan, C., X. Qiau, and Y. Zhang. 2003. Effect of Different Clay Treatments on Morphology and Mechanical Properties of PVC Clay Nanocomposites. Polymer Testing. 22: 453−461.

Wang YJ, Truong VD, Wang L. 2003. Structures and Rheological Properties of Corn Starch as Auected by Acid Hydrolysis. Carbohydrate Polymers; 52(3):327-333.

Wang, Y., Zhang, L., 2008. Highstrength waterborne polyurethane reinforced with waxy maize starch nanocrystals. Journal of Nanoscience and Nanotechnology 8 (11), 5831-5838.

Wei, B.X., Zhang, B., Sun, B.H., Jin, Z.Y., Xu, X.M., Tian, Y.Q., 2016. Aqueous re-dispersibility of starch nanocrystal powder improved by sodium hypochlorite oxidation. Food Hydrocolloids 52, 29-37.

Yu Y., J. Wang. 2007. Effect of γ-ray irradiation on starch granule structure and physicochemical properties of rice. Food Research International 40. 297-303.

Zheng H, Ai F, Chang PR, Huang J, Dupresne A. 2009. Structure and Properties of Starch Nanocrystals Reinforced Soy Protein Plastics. Polymers Composites;30(4):474480.

Zhou, G., Luo, Z., Fu, X., 2014a. Preparation and characterization of starch nanoparticles in ionic liquidin-oil microemulsions system. Industrial Crops and Products 52, 105-110.

Zhou, G., Luo, Z., Fu, X., 2014b. Preparation of starch nanoparticles in a water-in-ionic liquid microemulsion system and their drug loading and releasing properties. Journal of Agricultural and Food Chemistry 62, 82148220.

Zuo, J.Y., K. Knoerzer, R. Mawson, S. Kentish, M. Ashokkumar. 2009. The pasting properties of sonicated waxy rice starch suspensions. Ultrasonics Sonochemistry. 16. 462-468.

Refbacks

  • There are currently no refbacks.